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Abstract—Event-based vision, led by a dynamic vision sensor
(DVS), is a bio-inspired vision model that leverages timestamped
pixel-level brightness changes of non-static scenes. Thus, DVS’s
architecture captures the dynamics of a scene and filters static
information out. Although machine learning algorithms based
on DVS inputs overcome active pixel sensors (APS), they still
struggle in challenging conditions. For example, DVS-based
models outperform APS-based ones in high-dynamic scenes but
suffer in static landscapes. In this paper, we present GEFU
(Grayscale and Event-based FUsor), an approach that opens to
sensor fusion by combining grayscale and event-based inputs.
In particular, we evaluate GEFU’s performance on a practical
task: predicting a vehicle’s steering angle in a realistic driving
condition. GEFU is built on top of a consolidated convolutional
neural network and trained with realistic driving conditions. Our
approach outperforms solo DVS- or APS-based models on non-
trivial driving cases, such as the static scenes for the former and
the suboptimal light exposure for the latter approach. Our results
show that GEFU (i) reduces the root-mean-squared error to ∼2◦

and (ii) although the magnitude of the steering angle does not
always match the ground truth, the steering direction left/right
is always predicted correctly.

Index Terms—Sensor Vision, Machine Learning, Sensor Fusion

I. INTRODUCTION

Event-based visions are biologically inspired vision algo-
rithms driven by continuous scene changes. Dynamic vision
sensor (DVS) [1]–[3] implements in hardware high-speed
event generation acting as a high-pass filter that filters static
and consequently redundant information out from a scene.
Although both active pixel sensors (APS) and DVS share a
similar construction architecture based on an active matrix of
photodetectors, they have different output formats. Typically,
APS returns a matrix of pixels’ intensity at a constant rate. On
the contrary, DVS generates an independent response to bright-
ness changes for each pixel containing timing, intensity, and
matrix-level position. Over frame-based sensors (e.g., APS),
DVS presents non-trivial advantages such as high temporal
response (microseconds vs. milliseconds), high dynamic range
(140dB vs. 60dB), reduced bandwidth, and low power [4]–[6].

Due to the intrinsic characteristics, event-based vision al-
gorithms naturally behave as motion detectors by focusing on
moving edges while ignoring static regions of the scene. Thus,
event-based vision algorithms perfectly fulfill tasks in which
the scene changes continuously, such as object tracking [3],

[7], 3D reconstruction [8], [9], motion segementation [10],
etc. In that regard, one of the first event-driven practical
applications comes from Lee et al. [11], [12], which exploited
the output of a DVS to feed a machine learning algorithm that
recognizes non-stationary gestures in real-time.

By exploiting this approach, Maqueda et al. [13] used an
enhanced commercial DVS camera to evaluate to what extent
a consolidated frame-based vision algorithm fed with recon-
structed frames (e.g., the frames have been reconstructed by
accumulating DVS events in a given time window), overcomes
traditional grayscale inputs on self-driving cars. Specifically,
the authors proposed a deep learning algorithm based on
convolutional neural networks (CNN) [14] to exploit the
natural response of DVS to scene motion and return a real
number indicating the steering angle of a self-driving car.
Maqueda et al. [13] reported that DVS-based deep learning
models overcome grayscale vision algorithms in challenging
scenarios where grayscale sensors fail due to adverse weather
conditions, suboptimal illumination, and fast motion.

Although opening the potential of event cameras on a
challenging motion-estimation task, the approach proposed by
Maqueda et al. [13] overlooks a fully realistic usage. Indeed,
none of the two variants (i.e., solo grayscale or solo event-
based) is immune to all road conditions. For example, the
solo event-based approach overcomes the grayscale in adverse
weather conditions due to a lack of brightness, but it hangs in
stationary conditions due to the absence of events.

In this paper, we presented GEFU (Grayscale and Event-
based FUsor) an approach built on top of a consolidated frame-
based CNN model [14]. The tool aimed to improve the frame-
based model’s robustness by exploiting both the advantages
of grayscale and event-based sensors. In particular, we created
two different network configurations to evaluate the robustness
of GEFU in adverse ambient conditions such as suboptimal
illumination and non-moving scenes.

Significance of research contribution. The proposed ap-
proach represents a step toward the design of robust self-
moving vehicles. Our experiment shows that GEFU can
extend previous results by integrating complementary inputs
(i.e., grayscale and event-based) into the continuous domain
(i.e., steering angle) with a limited performance impact. It is
worth noticing that GEFU focuses on the robustness of frame-
based algorithms when exploiting sensor fusion.
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II. RELATED WORK

We focus our discussion on (i) event-based sensors and (ii)
deep-learning approaches for DVS. Due to space limitations,
we omit to discuss the many applications of DVS, pointing
the reader to an inclusive survey by Gallego et al. [15].

A. Event-Based Sensors

Frame-based sensors (e.g., APS) are designed to return
brightness information in a full square matrix of pixels at a
constant interval known as frame rate (e.g., 60 fps). On the
contrary, event-based sensors, such as DVS [16]–[19], generate
a stream of events in response to a brightness change in the
observed scene. The events have the property of decoupling
pixels’ information by indicating only the pixel affected by
the brightness variation. In other words, the generated events
are independent of each other and assume the form of planer
coordinates followed by a timestamp and brightness polarity
(positive and negative). Thus the throughput is variable (up to
450 MEPS [20]) and is proportional to the amount of captured
events. This encoding takes inspiration from the spiking nature
of biological cells as described initially by Lichtsteiner [16]
and acts as a filter that automatically suppresses static (i.e.,
non-dynamic) information such as not moving scenes. Since
the amount of data generated is dynamic, DVS can be op-
timized for low-power or high-throughput applications [5],
[21], [22]. In short, DVS presents advantages regarding high
dynamic range (HDR), up to 140dB, that allows for capturing
bright stimuli even in dark environments [3], [23], low-power
impact <10mW due to the absence of redundant informa-
tion [4], and low-latency response, <10µs, because each pixel
works independently [23]–[25].

B. Deep-Learning Approaches for DVS Input

For their intrinsic nature, event-based sensors produce asyn-
chronous events (e.g., timestamped pixel-wise brightness) as
an irregular, over time, stream of coordinates. Due to this
characteristic, two main strategies are commonly used to feed
deep-learning models (i) rely on innovative models such as
spike neural networks (SNN) [26] or (ii) perform a data pre-
processing such as the frame-conversion based on fixed time-
windows used by Lungu et al. [27]. By using the latter pre-
processing approach, Lungu et al. [27] leveraged event-based
inputs to train conventional frame-based CNN models for their
rock-paper-scissors player, Orchard et al. [26] advanced an
object recognition able to classify up to 36 characters, and
Moeys et al. [28] combined both APS and DVS to produce a
four-classes detector. As opposed to the previous classification
models, Maqueda et al. [13] targeted a continuous estimation
problem: Steering angle for self-driving cars. In other words,
the downstream output is a continuous value rather than a
predefined class. Our work continues on a regression problem
as done by Maqueda et al. [13] by overlooking the limitations
of single input (i.e., APS or DVS) algorithms. In particular, our
approach aims at evaluating sensor fusion as done by Moeys
et al. [28] for their classification approach but applied to a
continuous domain: Steering angle prediction.

III. METHODOLOGY

The goal of our study is to empirically assess the robustness
of frame-based computer vision algorithms in realistic condi-
tions, such as predicting the steering angle for autonomous ve-
hicles, specifically for self-driving cars, when mixing multiple
inputs. The context is represented by the data collected with
a DAVIS [2] sensor mounted on the windshield of a vehicle
driven by humans in realistic driving conditions. The study
aims at answering the following research questions (RQs)
RQ1: What is the performance of GEFU when evaluated in

a more realistic scenario? With RQ1 we aim at assessing
the performance of GEFU in predicting the steering angle
by considering a realistic driving condition, i.e., we do not
exclude challenging cases from the testing dataset.

RQ2: To what extent does sensor fusion overcome single-input
approach? With RQ2 we aim at evaluating the robustness
of GEFU against adverse driving conditions when fusing
diverse data sensors i.e., grayscale and DVS.

Figure 1 depicts the block diagram of the proposed
approach. In particular, A illustrates the pre-processing
steps adopted to create both training and testing datasets
from the publically available DAVIS Driving Dataset 2017
(DDD17) [29]. B shows the differences between the two
frame-based CNN models proposed in our approach to process
single and multiple inputs.

A. Training and Testing Datasets Selection

To have a fair and repeatable evaluation, we train and
validate our deep-learning model using the publicly available
DAVIS Driving Dataset 2017 (DDD17) [29] as previously
done by Maqueda et al. [13] that also represents our baseline.
DDD17 contains approximately 12 hours of realistic vehicle
driving (∼400 GB) in different weather, road, and illumination
conditions. The events and grayscale frames have been ac-
quired with a DAVIS [2] sensor that includes both a grayscale
camera and a DVS on the same pixel array (346× 260 pixel
resolution). To have a more realistic driving condition, the
DAVIS has been mounted on the windscreen of a Ford Mon-
deo, framing the frontal street. Besides events and grayscale
frames, the acquired dataset includes car data (e.g., steering
wheel angle, accelerator pedal position, brake pedal status,
etc.) captured by connecting a custom recording system to the
OBDII port of the vehicle. To have non-overlapping training
and testing datasets, we implemented the same approach used
by Maqueda et al. [13]. First, we split the DDD17 recording
into one-minute sequences. Then, per each minute, we took
the first 40 seconds for building the training dataset and the
remaining 20 seconds for the testing dataset. This semi-random
approach helps reduce the over-optimistic estimation [30] (i.e.,
during normal driving, subsequent frames retain almost the
same steering angle).

B. Event-to-Frame conversion

Consolidated vision algorithms are designed to process the
input in the form of frames (e.g., a 2D matrix of pixels
intensity), such as the case for APS cameras. On the contrary,
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Fig. 1: Block diagram of the proposed approach. A describes
the pre-processing steps used to create training and testing
datasets from grayscale and DVS-based frames. B highlights
the architectural variations of our frame-based models.

DVS cameras by generating decoupled events in response
to a brightness change, cannot be used without applying a
pre-processing step. Indeed, to take advantage of frame-based
conventional algorithms, asynchronous and sparse inputs, such
as the case of events for DVS, need to be converted into
consecutive frames at a constant rate. To this aim, we adopted
the demonstrative approach proposed in DDD17 [29] that
accumulates the DVS events into pixel-wise time windows
of a predefined length. The result is a stream (at a constant
rate) of a 2D matrix of pixels’ intensity. Specifically, for
our approach, we accumulated in a 2D matrix m the events
ek = (xk, yk, tk, pk) corresponding to all brightness changes
happening in the constant interval time T . It is worth noticing
that to prevent pixel-wise information loss due to the accu-
mulation of both positive and negative brightness changes in
the same time window, we accumulated positive and negative
events into two different 2D matrixes, namely m+ and m−. In
other words, for every accumulation interval T , we generate a
2-channel frame that results in the sum per pixel coordinates
of all positive (or negative) events.

C. Datasets Pre-Processing

In a self-driving task, the challenge is to predict the correct
steering angle of the wheels. Nonetheless, turns and overtakes
are less frequent than straight lines. DDD17 shows a high
unbalanced toward small, or even zero, steering angles. More-
over, there are conditions in which the vehicle is stationary
due to, for example, a traffic light. To balance training data,
we followed the approach of Maqueda et al. [13]. In partic-
ular, we removed from the training dataset ∼70% of frames
corresponding to a steering angle < 5◦ or a vehicle velocity <
20km/h. On the contrary, the testing dataset is left untouched
for recreating as much realistic evaluation as possible. In

addition, to accommodate a smooth learning process [31] and
prevent unstable learning caused by weight values changing
dramatically, the input values of both grayscale and event-
based converted (see Section III-B) frames have been linearly
scaled into the range [0, 1]. Specifically, for the grayscale
frames, we linearly scaled the brightness from the original
range [0, 255] generated by the grayscale sensor to [0, 1].
For the DVS, we need to consider that each matrix’s value
represents the number of positive (or negative) brightness
variations caught by the DVS per pixel in the given interval
of time. Thus, a pixel-wise value does not have a predefined
upper bound, such as in the grayscale sensors. Nonetheless, it
remains proportional to the scene’s dynamicity. For example,
a fast-moving subject in the framed scene will generate more
events. To scale the input in the range [0, 1], we considered
first the distribution of all positive and negative events across
all frames, and then we applied a 3-sigma scaling. Finally,
to diversify further the scenes seen by the model during
the training (e.g., low-speed moving with a constant steering
angle), we applied a data augmentation technique that includes
simple image transformations such as image scaling, rotation,
translation, etc. [32].

D. Deep Neural Network Architecture

To achieve our goal, we started from the best-performing
model proposed by Maqueda et al. [13]: A custom neural net-
work composed of a single ResNet50, a global average pooling
(GAP), and two fully connected (FC) layers. In particular, for
single frame input, we created GEFU@1 by attaching to the
ResNet50 a GAP layer followed by a fully connected 1024-
dimensional layer, followed by a ReLU non-linear unit, and
the final fully connected 1-dimensional layer. While to accom-
modate multiple frame-based inputs, we created GEFU@2
by including an additional ResNet50 before the GAP layer.
In this way, GEFU@2 accepts two frame-based inputs fed
with actual grayscale and DVS-derived frames (see Section
III-B and Section III-C). GEFU@2 is specifically designed
to merge the encoded image features of the two ResNet50
layers at the GAP stage rather than mixing grayscale and
DVS-derived frames as a unified input of a single ResNet50
layer. The latter approach is justified because we already
experimented with GEFU@1 which combines both grayscale
and event-based information in a single 3-channel frame.

In both cases, the network output is a predicted real number
scaled to match the actual wheels’ steering angle. For both
GEFU@1 and GEFU@2, we trained the models to optimize
the loss function designed to minimize the error between the
predicted output and the referring steering angle. Although
a so-defined network is no longer state-of-the-art (e.g., Vision
Transformer may overcome ResNet50 at the cost of a complex
architecture [33]), this network still represents a valid compro-
mise in terms of architecture simplicity, training resources, and
overall performance. Moreover, the Keras [34] implementation
in the form of a simplified baseline for grayscale and event-
based frames [35] allowed us to not start from scratch and
focus more on our ultimate goal.
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E. Data Collection and Analysis

We assess the accuracy of the predictions generated by each
model as a regression problem. In other words, we could
not count the number of instances correctly predicted; rather,
we rely on the difference between the ground-truth and the
prediction to estimate the model’s goodness. Thus, for each
model, we calculated two common metrics used to evaluate the
performance of regression tasks: the root-mean-squared error
(RMSE) [36] and the proportion of variation in the predicted
values concerning the observed values (EVA) [13]. On top
of this quantitative analysis, we also performed a qualitative
analysis to better understand the strengths and weaknesses of
GEFU. We manually inspected a set of “wrong predictions”
e.g., predictions in which the model is steering in the exact
opposite direction. This means that the model may be correct
in magnitude but wrong with the sign (i.e., the steering angle
is opposite to the ground-truth).

IV. RESULTS

To answer RQ1 and RQ2, we run GEFU@1 and GEFU@2
using the datasets described in Section III. Thus, we created
three single-input experiments (namely APS, DVS, and CMB)
and one double-input experiment (namely DBL) as described
in Section IV-A. Then, we performed quantitative and qual-
itative analyses to evaluate the characteristics of the best-
performing model.

A. Setup of Experiments

The input of a CNN is usually a dense matrix that coincides
with the shape of the first layer of the network, i.e., 200×200
for GEFU. This approach work for frame-based inputs, such
as the case of frames generated at a constant rate by APS. In
our approach, the input generated by the DAVIS [2] sensor
is both a grayscale matrix of 346 × 260 pixels generated
at fix rate and a stream of timestamped events generated
by the event-base camera. Thus, we needed to adapt these
sources to our model. For the grayscale case, we centrally
cropped the image to a square size of 200 × 200 pixels. For
the event-based case, instead, we followed the demonstrative
approach of DDD17 [29], accumulating the events in regular
time windows (50ms for our best-performing model). This
process allowed us to create frames at a fixed rate from the
stream of timestamped events (see Section III-B). Moreover,
the grayscale output has only a single value per pixel (e.g.,
the corresponding grayscale brightness value), resulting in
a single-channel matrix of 1 × 200 × 200 pixels. Instead,
the event-based frames created by accumulating positive and
negative events falling in constant time windows resulted in
a two-channel matrix of 2 × 200 × 200 pixels. With these
inputs, we defined a total of four experiments, three of which
are based on a single-frame input and one uses a double-frame
input as summarized in Table I.

Nonetheless, to comply with the ResNet50 input shape, we
always adapt our inputs to recreate a three-channel image (3×
200×200). To this aim, we applied three different strategies to
the inputs of GEFU@1. For the solo grayscale case (APS), we

TABLE I: Combination of GEFU and DDD17 derived dataset
to define our four different experiments.

Model Input Description

GEFU@1 (APS) Uses only grayscale frames
GEFU@1 (DVS) Uses only event-based frames

GEFU@1 (CMB) Combines grayscale and event-based
frames in a single 3-channel frame

GEFU@2 (DBL) Divide grayscale and event-based in
separated input frames

250 275 300 325 350 375 400 425 450
Frames
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0
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es

Steering Predictions vs. Ground-truth
Ground-truth
GEFU@1 (APS)
GEFU@1 (DVS)
GEFU@1 (CMB)
GEFU@2 (DBL)

Fig. 2: Predictions of GEFU for a representative sample of
200 consecutive frames starting after 12.5s of the recording.

triplicated the single-channel matrix to create a three-channel
image. For the event-based case (DVS), we added an empty
(zero-filled) channel next to the positive and negative channels
derived from the event accumulation. And, for the combined
grayscale plus DVS case (CMB), we used a full three-channel
image where two channels come from event-based frames
(positive and negative) and the third channel comes from the
grayscale input. Finally, for GEFU@2 that expects two times
3× 200× 200 images, we combined the previously discussed
single input strategies. In other words, for the grayscale input,
we triplicated the single-channel matrix and for the event-
based input, we filled the third not used image channel with
zeros. This resulted in two images of 3× 200× 200 each. By
combining these inputs with the two CNN architectures we
obtained four different experiments, namely GEFU@1 (APS),
GEFU@1 (DVS), GEFU@1 (DVS), and GEFU@2 (DBL).

B. Quantitative and Qualitative Analysis

Figure 2 shows a portion of the steering prediction when
GEFU is evaluated on the test dataset. For the sake of space
limitation, this interval highlights only 200 consecutive frames
starting at frame 250. By comparing the predictions to the
ground-truth (blue line) it is clear how the steering angle,
as well as the direction is not always correctly predicted, as
confirmed by the RMSE value in Table II. Indeed, Figure 2
helps to clarify to what extent the model is missing the
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(a) GEFU@1 (APS) (b) GEFU@1 (DVS) (c) GEFU@1 (CMB) (d) GEFU@2 (DBL)

Fig. 3: Example of steering angle prediction in suboptimal light conditions (frame 327). (a) shows a right turn misprediction
when GEFU@1 relies only on grayscale inputs. Although the high dynamic of DVS allows for capturing more details about
the foreground building, GEFU@1 in (b) still struggles to predict the right turn. (c) is the optimal case where the prediction
error is minimal while still keeping the same architecture complexity. Finally, (d) shows the case where neither a more complex
architecture outperforms GEFU@1 when mixing different sources of input.

TABLE II: Comparison of the best-performing models as
previously reported by Maqueda et al. [13] and our best
performing approaches.

Approach Input EVA RMSE

Bojarski et al. [37] grayscale 0.16 9.02◦

Xu et al. [38] grayscale 0.30 8.19◦

Maqueda et al. [13] event-based 0.82 4.10◦

GEFU@1 (APS) grayscale 0.47 3.66◦

GEFU@1 (DVS) event-based 0.79 2.30◦

GEFU@1 (CMB) grayscale + event-based 0.83 2.08◦

GEFU@2 (DBL) grayscale + event-based 0.76 2.45◦

right angle. For example, by following GEFU@1 (APS)
(Orange line), it is clear that the APS-based model outperforms
GEFU@1 (DVS) (green line) around frame 325 (the left/right
direction is respected) but fails almost for every initial frame
(up to 300th frame) by predicting mainly a straight direction
as also shown Figure 2. However, GEFU@1 (DVS) is not
immune to errors; while there are frames where it outperforms
all other models (i.e., 315th frame). By looking at Figure 3b
it is clear that GEFU@1 (DVS) at frame 327 predicts an
opposite steering direction (i.e., inverting left with right turns).

In contrast to single input models (i.e.,GEFU@1 APS and
DVS), GEFU@2 (DBL) (violet line in Figure 2) is more
accurate by preventing wrong turns. However, this benefit
comes at the cost of more complex architecture that doubles
the number of network weights. Consequently, it demands
higher computational resources and a larger memory footprint.

Nonetheless, the best results are achieved with GEFU@1
(CMB) (red line in Figure 2) which shares the same architec-
ture of GEFU@1, but it lies on a different input organization.
In this case, we mixed grayscale, positive, and negative events
in a three-channel matrix of 3 × 200 × 200 pixels. This
approach allows approximating or even outperforming the
performance of GEFU@2 (DBL) but with zero impact in
terms of additional computational power or memory footprint.

V. CONCLUSION

In this work, we presented GEFU a frame-based CNN
model designed to overcome the limitations of two indepen-
dent vision-based approaches by converging into the same
network grayscale and event-based frames. With the proposed
approach, we aim to evaluate two sensor fusion approaches
while comparing the results again single input baselines. In-
deed, our intent is to push sensor fusion rather than advancing
as the best-performing model; thus, this study defines a lower
bound in terms of performance achievable by a ResNet50-
based architecture. We showed, through manual inspection
of a sample of “wrong” predictions, that both grayscale and
event-based solo-approaches suffer in their respective domains.
Indeed, GEFU@1 (APS) confirmed a lower accuracy in sub-
optimal light conditions while GEFU@1 (DVS) demonstrated
weak robustness in static or low-dynamic scenes. Finally, we
show how a straightforward model GEFU@1 (CMB) can
outperform a more complex model GEFU@2 (DBL) by only
manipulating data input with zero impact on performance.

This observation opens to future investigations and includes:

Investigate stat-of-the-art vision algorithms. This could be
achieved by exploiting off-the-shelf architectures that
appear natively robust [39]. For example, researchers
may train vision algorithms based on Transformers [33].
However, contrary to CNN-based, Transformers need to
be trained with massive data, which poses two challenges.
First, handling such a huge network requires non-trivial
computational resources and a very long training phase
not always available at an academic level. Second, it
requires extended recording sessions that include as many
ambient conditions as possible.

Dig more into sensor fusion. While GEFU is a preliminary
attempt to open to sensor fusion, researchers could inves-
tigate more on it. For example, researchers can investigate
the effect of an early input merging that leaves the
downstream network unmodified or a late merging that
requires an ad hoc architecture.
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